Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.more » « less
-
Abstract AimThe International Tree‐Ring Data Bank (ITRDB) is the most comprehensive database of tree growth. To evaluate its usefulness and improve its accessibility to the broad scientific community, we aimed to: (a) quantify its biases, (b) assess how well it represents global forests, (c) develop tools to identify priority areas to improve its representativity, and d) make available the corrected database. LocationWorldwide. Time periodContributed datasets between 1974 and 2017. Major taxa studiedTrees. MethodsWe identified and corrected formatting issues in all individual datasets of theITRDB. We then calculated the representativity of theITRDBwith respect to species, spatial coverage, climatic regions, elevations, need for data update, climatic limitations on growth, vascular plant diversity, and associated animal diversity. We combined these metrics into a global Priority Sampling Index (PSI) to highlight ways to improveITRDBrepresentativity. ResultsOur refined dataset provides access to a network of >52 million growth data points worldwide. We found, however, that the database is dominated by trees from forests with low diversity, in semi‐arid climates, coniferous species, and in western North America. Conifers represented 81% of theITRDBand even in well‐sampled areas, broadleaves were poorly represented. OurPSIstressed the need to increase the database diversity in terms of broadleaf species and identified poorly represented regions that require scientific attention. Great gains will be made by increasing research and data sharing in African, Asian, and South American forests. Main conclusionsThe extensive data and coverage of theITRDBshow great promise to address macroecological questions. To achieve this, however, we have to overcome the significant gaps in the representativity of theITRDB. A strategic and organized group effort is required, and we hope the tools and data provided here can guide the efforts to improve this invaluable database.more » « less
An official website of the United States government
